
A POST-LAGRANGE/POINCARE LOOK AT CALCULUS

In his recent report on the calculus reform in the field, Tucker writes that "the content of the new
calculus may not differ that much from the old calculus. (...). Calculus may have a core of ideas
and techniques that must remain invariant under any transformation.." A couple of years into the
"calculus initiative" and a feeling seems already to be developing that, crisis or no crisis, changes to
the calculus are either much harder to be brought about than anticipated or perhaps, after all, not
even possible. Adding "This is depressing in a way, however. If contents were the problem, we
would have a quick fix: change the textbooks", Tucker then echoes what seems to be an emerging
consensus: if there is any room for improvement, and it is by no means generally agreed that there
is, e.g. Anton's talk in Louisville, then what seems to be neeeded is a new improved delivery system,
preferably computerized.

We disagree. As we see it, the contents are subordinated to our conception of the calculus
(including differential equations), both as a theory and in terms of the questions it is intended to
address and this is where the problem lies. The currently prevailing conception involves: i. an
almost complete disregard of the study of functions (understood as in the French Etude de function)
and ii. an obsession with calculating everything in closed form. That the conventional conception of
the calculus is based on the notion of limit is a further irony given that is does not yield transparent
descriptions of the bahaviour of functions and that it offers no algorithm to find limits.

We would argue that inasmuch as functions are the mathematical expression of "processes", a
curriculum truly for "just plain folks" should take a geodesic course toward the study of Dynamical
Sytems as this is how most functions appear in real life and almost never in closed form: the
differential system   ̇ x = f(x) , is studied near x0 by approximating f(x) near x0 by its Taylor
approximation: either f(x0)≠0 in which case we find that nothing of very much interest happens near
x0 or f(x0)=0 in which case we approximate f(x0+h) by the next term, f'(x0)h etc.

This then means that i. differential equations should be introduced as soon as possible, at least
in particular cases, and in any case well before the integral calculus and ii. even polynomial and
rational functions should be studied in a way that announces and prepares the way solutions of
differential systems will be studied. In other words, we are advocating the study of functions by
way of asymptotic expansions.

 With students having only a background in basic algebra, and starting with power functions as
gauge functions, we are able to study affine, quadratic, polynomial and rational functions as locally
approximately (Laurent–) polynomial functions during the first semester. We introduce almost
immediately the idea of differential equation. For example, the "point-slope formula" for a straight
line appears as solution of the differential equation f'(x) = m with initial condition f(x0) = y0. During
the second semester, we discover new behaviours, particularly at ∞, with algebraic functions defined
as solutions of algebraic equations and "elementary" functions as solutions of differential
equations. We obtain approximate solutions by the method of indeterminate coefficients and after
showing that they have properties such as the addition formula we assert them to be approximations
of exact solutions. After the exponential function has been characterized near infinity as exceeding
all power functions, it is included among the gauge functions «Dieudonné, 1968/1971 #52». This
could be followed by a global study as in «Lang, 1976 #18» or «Finney, 1984 #16». If desired,
sided limits can be obtained algorithmically with l'Hospital rule made unnecessary.

Local best polynomial approximations are easily visualized because their graphs,among which
the tangent, (see «Bivins, 1986 #32» which won its author both the G. Polya and the Merten M. M.
Hasse prizes) are osculating lines. Given f(x0+h) = A0 + A1h + A2h2 + ... , we construct:
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As an example, the function f(x) = 
x–2
x2–1  can be graphed as follows: at ∞, f(x) = 

x+ ...
x2+ ...  and by

division in descending powers f(x) = 
1
x  + ... . At the poles, f(–1+h) = 

–3+ ...
–2h+ ...   and by division in

ascending powers f(–1+h) = 
3
2h  +... . Similarly, f(1+h) = 

–1+ ...
2h+ ...   = 

–1
2h  +... . We then sketch the

local graphs and interpolate smoothly:
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f∞(x) = 1
x     f– 1(h) = 3

2h  f+1(h) = – 1
2h  "Essential" graph of f

Qualitatively, we define the sign of a function near x0, (+,+), (+,–), (–,+), (–,–), that is the way
values near x0 differs from 0, we compare the first non-zero approximation to the Zero Function. To
define the variation near x0, (Ω,Ω), (Ω,œ), (œ,Ω), (œ,œ), that is the way values near x0 differ from the
value at x0, and the optimization near x0, (max,max), (max,min), (min,max), (min,min), that is the way
the value at x0 differ from values near x0, we compare the first best non-constant approximation to
the Best Constant Approximation. To define the concavity near x0, ($%,$%), ($%,̂ &), (^&,$%), (^&,̂ &),
that is the way the slope near x0 differs from the slope at x0, we compare the first best non-affine
approximation to the Best Affine Approximation. This yield a very exporessive language to discuss
the local behaviour of functions. For instance, the "second derivative test" is seen as follows: Given,
we get Sign f"(x0+h) from the sign of f"(x0) or, if f"(x0) = 0, directly. In either case, this gives
Concavity f(x0+h) and, if x0 is a critical point, that it is an extreme.

Systematically enlarging the universe of functions then lends itself particularly well to gradual
generalizations because there is no technical difficulty to obscure the concepts being discussed.
Consider, for instance, how what we call the Zero Theorem generalizes. In a universe which consists
of only the zero function, the Zero Theorem reads: a function is zero everywhere; in the universe of
constant functions, a function is either zero everywhere or nowhere; in the universe of affine
functions, a function is either zero everywhere or nowhere or at exactly one point; in the universe of
quadratic functions, we must take into account the multiplicity of the zero and look at Sign f(x0+h).

Quantitatively, we define the (Peano) derivatives from the coefficients in the best polynomial
approximations. Thus low degree polynomial functions induce a qualitative hierarchy «Gleason,
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1967 #34»: continuous functions are locally approximately constant, differentiable functions are
locally approximately affine, etc.

For the third semester, we plan on developing a course on dynamical systems as an alternative
to the integral calculus much better suited to the needs of students intending to pursue a career in
the sciences but not, a priori, in mathematics, physics or engineering. But even to motivate the
relation between the antiderivative and the definite integral, we would rather follow Picard «Picard,
1901 #30»:

"Integral Calculus was born the day one asked the question: given f(x), does there exist a
function whose derivative is f(x), in other words a function which satisfies

(1)
dy
dx  =f(x)

This question was at first answered by a geometrical interpretation which, even though it had
no value in itself, helped greatly with the solution of the problem: One graphs first the function f
then one considers the area bounded by this curve, the x-axis and two parallels to the y-axis, one
fixed, the other one variable. One then shows that the area, considered as a function of the x-in-
tercept x of the second parallel is a function of x having f(x) as derivative. It is clear that,  unless
one assumes that the notion of area is given, the problem has not been solved rigorously. We as-
sume f continuous. The following considerations lead naturally to the algebraic expression which
plays a fundamental role in the Integral Calculus. Assume, for a moment, the existence of a
function y satisfying (1), with y(a) = y0 and y(b) = Y. Subdivide the interval [a,b] in n intervals and
let x1, x2, ... , xn–1, be the x-coordinate of the subdividing points. Let y1, y2, ... , yn–1 be the

corresponding values for y. If the interval x1–a is small enough, the quotient 
y1–y0

 x1–a  is very close to
f(a) and we have the following equations which hold only approximately:

y1–y0 = (x1–a)f(a)
y2–y1 = (x2–x1)f(x1)

.

.

.

.
Y–yn–1 = (b–xn–1)f(xn–1)

Adding them up, we obtain:

Y–y0 = (x1–a)f(a) + (x2–x1)f(x1) + ... + (b–xn–1)f(xn–1)

This holds only approximately but, hopefully, the approximation will get better and better as
the number of intervals increases and the length of each one goes to 0. We are thus led, given a
continuous function f to study the sum  (x1–a)f(a) + (x2–x1)f(x1) + ... + (x2–x1)f(x1)."

We believe that it is only in such a way that we will be really able to bring about the changes
that, deep in our heart, we all know are indispensible. Unfortunately, other than in subjects dealing
technically with asymptotic expansions such as differential topology, number theory, etc and other
than ... in French, there is an almost complete lack of literature on the subject. Then, many will
surely be the letters to the editor to say about some or the other of the above, and to paraphrase
«Dudley, 1988 #44»,: "Evidently, the authors are unaware that ..." or to say that this approach
emphatically cannot work "because it lacks the intuitive notion of the tangent being approached by a
secant " or "because we have enough trouble teaching Taylor series". "Eppur si muove".


